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ABSTRACT 
The problem  addressed in this  paper is that of clustering  image pixels into regions of homogenous  geological texture. 
Future  rovers  on  Mars will need to be  able to intelligently select data collection targets.  One  goal of intelligent data 
select,ion for maximizing scientific return is to sample  all  distinct  types of rocks that may  be  encountered. Different 
rock types  often  have  a  characteristic  visual  texture,  thus  visual  texture is a rich source of information for separating 
rocks into different types. 

Recent  work  on using texture  to segment  images  has  been  very successful on  images  with  homogenous  textures 
such as mosaics of Brodatz  textures  and  some  natural scenes. The geologic history of a rock leads to irregular  shapes 
and surface  textures. As a  result,  the  textures in our  images  are  not  as  homogeneous as  those in Brodatz mosaics. 

Our  approach is to  extract  textural  information by  applying  a  bank of Gabor  filters to  the image. The  resulting 
texture  vectors  are  then  clustered.  Banks of filters  constrain  the  relationships of the filter parameters  both  within 
a single filter and between  filters.  Often  researchers  have  used  parameter  values that  are  thought  to correspond to 
the  human  visual  system, however the effects of adjusting  these  parameters have not been thoroughly  studied. We 
systematically  explore  tradeoffs in the  parameter  space of the filter bank  and  quantify  the effects of the tradoffs  on 
the  quality of the  resulting  clusters. 
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1. INTRODUCTION 
The  amount of data  that  can  be  returned from interplanetary missions is much  smaller than  the  amount of data  that 
can  be  gathered by the  instruments on those missions.  One strategy for dealing  with  this  bottleneck is to design 
systems  that  can  intelligently select the  data  to  be  transmitted.  To  this  end, at JPL we are  working  on a texture 
segmentation  system  that will allow  rovers on  Mars to choose  rocks to examine  based  on  visual  texture.  Visual 
texture  can  provide  valuable clues to  both  the mineral  composition  and  geological  history of a  rock,  each of which 
is important  to geologists. We use  a  set of Gabor filters to  determine  the  features  associated  with  each  image pixel. 
Gabor  filters  are  both  scale  and  orientation specific, properties  that  make  them  suitable for use in  discriminating 
between different textures. 

Gabor  filters  have  been  popular for texture  segmentation for many  years in part  due  to  the  theory proposed  by 
Daugman'  that  some  simple cells in the visual  cortex  can  be  modelled  by 2D Gabor  functions.  The use of Gabor 
functions for texture  segmentation  can  be  divided  into  two  categories of application.  In  the  first  approach a bank 
of filters  with fixed parameters is used to segment  an image of unknown textures.  In  the second approach,  one  or a 
small  set of filters  are  carefully  designed to solve a specific problem,  usually  with a set of textures known  a priori. 
Examples of the  latter  approach  include Bovik et. al.3-5 who thoroughly  analyzed  the  properties of selecting a small 
set  Gabor  filters for texture  discrimination,  Dunn  et. a1.6 who  examined  the  problem of selecting a single filter to 
discriminate  between  two  textures  and Weldon et.  al.7>s who  looked at the problem of selecting  one  or a small  set of 
Gabor  filters to maximize  discrimination  between  multiple  known  textures. 

As we cannot  anticipate  all of the  textures  that may  be  encountered  by  a  rover  on  Mars, we adopt  the  former 
approach.  Parameter  selection is an  important issue with a bank of filters as well as  with a smaller  filter  set.  Jain 
and  Farrokhnia2 used a bank of filters  with  parameters selected based  on  computational  considerations  along  with 
experimental  evidence of the visual  cortex.  In  another  study of filter parameters, Leeg  derived the  conditions  under 
which a set of Gabor wavelet  filters  provide a complete  representation of an image.  In  this  paper we emprically 
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explore the effects of varying several of the  Gabor filter parameters  on  the  quality of resulting  classifications. We do 
not  restrict  filters to  model the behavior of the visual cortex, to be  independent,  or to  form a complete  set. 

We begin in Section 2 by presenting  the  mathematical  formulation of a Gabor  filter  and  discussing  the  relationship 
of filters  within  a  bank. We then  describe  the  parameters  that we vary and how the rest of the  parameters for a 
filter  are  derived.  In  our  experiments we have  compared  the  results of clustering the filter  outputs  to a ground  truth. 
We explain the  method we use for qua.ntitatively  assessing  the  agreement  between  two  classifications in Section 4, 
and  present  experimental  results in Section 5. Finally, in Section 6 we summarize  our findings and discuss  future 
directions for this  research. 

2. CHARACTERIZATION OF GABOR FILTERS 
A Gabor  function is a complex exponential  modulated by a  Gaussian. 

-( G(z, Y, Eo, u o ,  z o , y o ,  P ,  0, o x ,  .y) = “==e 2 4  2 0 2  1 ej(Eu(x-x,)+v,(Y-Y,)+P) 
( . - . ~ ) ~ o . ~ + ( y - y ~ ) s i n 8 ) ~ + ( ~ - ~ ~ ) S i n ~ + ( y - - y , ) c o s ~ ) ~  

T U P  

(1) 
The filter is centered a t  ( x  = x,, y = yo) in the  spatial  domain  and ( E  = E , ,  n = v,) in  the  spatial  frequency  domain. 
The  parameters ox and cy define the  standard  deviations  along  the  axes of the  Gaussian ellipse when  oriented  with 
the x-axis. The  orientation of the  modulating  Gaussian is given  by 6 and  the  phase of a  filter is given  by p .  Thus, 
there  are  eight  degrees of freedom. 

When a bank of filters is used, the  parameters of an individual filter are  related to  those of other  filters  within 
the  bank.  Several  assumptions  are  frequently  made  to  constrain  the  relationships of the filter  parameters. 

0 We plan to use  only  the  magnitude of the filter output so we may  center the filter at the  spatial  origin, 
x, = 0, yo = 0, and  set  the  phase of t,he filter to zero,  i.e. p = 0. 

0 We let the  modulating  Gaussian  be  oriented  with  the complex exponential  plane wave. This  leads  to Eo = w COS 0 
and u, = w sin 0 or w = &= where w is called the  radial frequency. 

The  equation for a single Gabor  filter  then becomes 

Taking  the  Fourier  transform yields 

G ( u ,  u ,  0, F, g z ,  .y) = e - 2 ~ ~ ( ~ ~ ( ~ ~ o ~ Q + ~ s i n Q “ F ) ~ + r r ~ ( u s i n f f + w c o s f f ) ~ )  (3) 
- - e - 2 X 2 ( ~ ~ ( U ’ - F ) 2 + ~ ~ ( w ’ ) 2 )  (4) 

where ut = u cos 6 + u sin 6, ut = u sin 6’ + v cos 6, and F = w/27r. We see that in the  spatial  frequency  domain,  the 
Gabor  filter is simply  a  Gaussian  with gtL = l/(ox7r) and gTL = 1/(ox7r). 

In  addition  to  these  relationships,  many  researchers  add  additional  assumptions  based on  physiological findings.9 

1. The  aspect  ratio 2 of the  modulating  Gaussian is 2 : 1. 

2. The  half-amplitude  radial  bandwidth of the frequency  response is about 1 to  1.5 octaves. 

We address  the  relaxation of assumption ( a ) ,  which has  two  components. The first  component is the use of the 
half-amplitude  as  the  point of reference for the  radial  bandwidth while the second component is the selection of a 
the  range 1 to  1.5 octaves for the value of the  bandwidth. By fixing the  radial  bandwidth, different sized images 
will require different numbers of distinct  center frequencies  or scales. As a  result,  the  number of filters  in a filter 
bank  becomes  a  function of image size. In  the  next  section, we show the derivation of a bank of filters  such that 
the  number of filters is fixed for arbitrary  image sizes. This is achieved  by fixing the  number of scales  as well as  the 
lower and  upper  bounds for spatial  frequency  space filter coverage. 
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Figure 1. Cross  section of Gabor  filters  centered  on  the u axis in the  spatial  frequency  domain. 

3. FILTER PARAMETER SELECTION 
As was  explained in the previous  section,  the filter bank will contain  Gabor  filters  with  four  free  parameters, 8, F ,  
uz and uy. We now show how the individual filter parameters  are  determined by  specifying five parameters  for  the 
entire  bank of filtesr.  These five parameters for the set, of filters  are  the  number of orientations,  scales,  minimum 
frequency, maximum  frequency and overlap  between  filters of conscutive scales. 

3.1. Orientation 
Filter  orientation, 0, can  range from 0 to T .  The  orientation  space is evenly  sampled  with  each  filter  having  angular 
bandwidth of n-/No where No is the  number of orientations  sampled. 

3.2. Center Frequency 
The  center  frequencies, F ,  can  be selected based  on  the  number of radial scales along  with the  minimum  and  maximum 
frequency to  be covered  by the set of filters.  Filter  amplitudes  along the u = 0 axis in the frequency  domain  for 
filters at different scales  are shown in Figure 1. The filter radial  center  frequencies  are  spaced  using a log scale. This 
means  that  the  ratio of one filter center to  the  next is a  constant,  i.e. 

where B is the  octave  spacing of the  center frequencies. Correspondingly,  the  radial  filter  widths  are  also  related by 

Given a minimum  frequency, uo, a maximum  frequency, u,, and  the  number of scales,n, we want to  calculate  the 
center  frequencies for filters at  each  scale. The maximum  value of each filter is one, so we do  not  normalize  the  area 
under  the  Gaussian. For a given  filter  along the u axis, we have 

We define the  support, q,  to  be  the height of the filter at  the point  where  neighboring  filters along  the u axis  intersect. 
In  the  past,  most  researchers have  kept the  support  constant  at 0.5. From  Figure 1 we can  see that 

where we have  dropped  the  subscript I L  from the  parameter a. 

From  Eq. (8) we have 
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and  thus 

Using the  same  steps  with F l ,  Fz and u2 we arrive at  

u2 = FI (E) l + 2 "  

Similarly, 

Solving Eq. (13) for FO gives 

We have  arrived at  an expression for Fo that, involves u, and B. At this  point, however, the  octave  spacing 
between  filter  scales, B ,  is not  known. We proceed to solve for B in  terms of the known minimum  and  maximum 
frequencies, uo and u,, by observing that Go(u0) = G?,,-l(uv,) which we can  write  as 

Substituting for Fn-l and crrz,-l we see that  Eq. (15) yields 

After  substituting  Eq. (14) into  Eq. (16) we can  arrive to 

Solving for B we get 
111 

n In 2 
B = " O  

which is our  desired  expression for B in terms of 110 and u,. 

The center  frequencies  are  thus  calculated by first evaluating  Eq. (18) followed by 

Fo = - (1 + 2 6 )  710 

2 

in which Eq. (17) has  been used to simplify Eq. (14). The rest of the frequencies follow using Fi = 2"(Z-l)Fo. We 
have thus  shown how the  radial  center frequencies  can be  determined by specifying the  number of scales,  along  with 
the minimum and  maximum  frequency coverage for the filter bank. 
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3.3. Fil ter   Widths  
The  width of a filter  in t>lle radial  direction is given by o~,,. Having  determined  tho  center  frequencies as clcscrihed in 
the previous  section, we can solve Eq. (8) for 0 0  = Og,, . The resulting  expression is 

1 ( ~ g  - 
Og,, = -- 

2 I n n  . 

In  general,  tlle  width of a filter at scale i E [2..n - I] is given by 

! 2oj 

The width  in the  angular direction is obtained by solving 

4. CLASSIFICATION 

After the ba,nl\- of Gabor filters is run over the image, we IISC l\--mcans  clustering to cla.ssify the pixels. Wc choose 
a number of clusters k appropriate for t,he  image. There is no  post-processing  after tht: classification step. 

Once the image  features have  been computed  and  clustered, thc quality of the classification  needs t,o be assessed 
in a quantitative way. For our geological images, we asked  geologists to hand  label a set of images so as to provide 
a reference  classification.  Several  approaches have been used to compare two classifications. Perhaps the simplest is 
to  compute the percentage of pixels which agree;  however,  a  matching  from onc set of labels to  the other must, bc 
computed  and difficulties arise when the two  lahellings have a different, number of classes.  One  case  where percentage 
of agreement, will fail t,o give a good measure of the quality of clustcring is where  one of the reference  classes is 
perfectly  matched by the union of two of the classes found by the  clustering  algorithm; in this case the two classes 
could be merged,  perhaps  with some  penalty,  yielding a much bettcr  score.  Another  measure given by Congalton" 
is the KHAT  statistic, which measures the agreement of the classification (again  assuming t,he correspondence of the 
reference  classes and tjllc  classes  found by the clust,crer is known or computed)  and  takes  into  consideration that, thr  
probability that  the agrecment  occurred by chance. 

The measure of quality we have chosen to  use is the  mutual  information of the  joint  distributions given by tho 
classifications.  Given the joint  distxibution p ( z ,  y) and  the  marginal  distributions p ( z )  and p (y )  for all labc4s :c il l  

classification X and all  labels ?/ i n  classification Y ,  the mutual inforrnation12 I (X;  Y )  is 

The mut,ual  information is a nonnegative  quantity; we divide it, by the rnutjuitl 
distribution of the reference  classification  with itjself to get, a. score  between 0 and 1. 

5. EXPERIMENTAL  RESULTS 
The image  ana,lysis  procodure is shown  in  Figure 2. Our set, of test images  includes  two  kind of images , images of 
geological interest  and a mosaic of Broclatz textures of the kind  often seen in  t,oxture classifica1,ion research. Tht. 
geological images  consist of two kinds;  in two irnagcs our  task is to discriminat,(! rock a.nd sand, and in thc other our 
task is to  1oca.te regions  in the image  with different pebble sizes. Segmenting the rocks by grayscale  is  possible in thesc 
images, In1t on ma.rs there is a pervasive  coating of red dust, reducing the contrast, hetween the rocks and the soil; 
therefore,  contrast, is a less reliable  feat,ure t h n  gross  surface t,exture. Looking for grain size diffkrexrccs is relevant, 
for understanding  the  sedimentary  deposition;  larger  grains  are  associated with difkrent  deposition procc.s: WS.  

For  our  experiments, we chose a filterbanlt  consisting of 20 filt,ers corlsist,ing of 5 s d e s  anti 4 orictntatiolls. I&'(> 
report on a set of experiments  where we va.ry the 71 paramet,er.  since 71 affects t,hc overlap of the filtms in frequt:nc:v 
space,  and  therefore  the  redundancy of t,he image  fcatures. Our result,s show that the value of 71 which glves tJhc hest 
classification  varies widely among  particular images.  Figures 3-6 show our plots of mutual  information its a function 
of 7, and  the classificat,iorl t,llat, results  from the opt,imal valuc: of  7) for ea.ch image. 



Figure 2. Textme analysis  scheme.  Optional  processing steps arc indicated wit,ll dashrd lines 

Figure 4. (a) original  image (12) clustering result, with q = 0.75 (c) mutual inforrrlat,ion scorc:s for tjr:st irr1agc.s :IS 

overlap, 7, is varied. 



Figure 5.  (a) original  image (11) clustering  result  with r/ = 0.1 (c) Mutual  information scores  for  test, ima.ges as 
overlap, 7, is varied. 

6. CONCLUSIONS 
It is common in  the  texture  literature  to  try to choose Gabor filter parameters which mimic the human perceptual 
system; however, our  experiments show that paramcters modeled on the llurnan  visual  system are notj optimal for 
all  cases. The  parameters  that,  do well on a particular  discrimination  ta,sk depend on a range of factors, s11rlr as t , h ~  
imaging  modality  and  the  particular textxres t,o be classified. Thus, with tlifkerent, paramcters.  Gabor fi1tr:ring may 
yield better  performance  tllan w a s  observed  in the experiments  performed by R.anden et. ai.'' comparing a variety of 
texture  segmentation  methods. The parameters  that work well for a particular  imaging  modality (such as thc hurnau 
perceptual  system)  arc  almost  ccrtainly  not generally appropriate,  and  the  pa.rameters  must be carcfully elmsen for. 
the task at hand. 
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